You are here:

4D Quantification of salt-related sinkhole development and migration

4D Quantification of salt-related sinkhole development and migration

Published:

​This research has been carried under the Geological Survey Ireland 2017 Short Call. This call provided funding for researchers in academia or industry on the island of Ireland for projects of less than 12 months duration and less than €25,000. 

Please note that the final report has been redacted to remove staff, financial and sensitive information. Some file sizes have been reduced to allow easier uploading/downloading, higher quality files are available on request. Supplemental information is also available on request in most cases. Please contact research[AT]gsi.ie

Disclaimer:  The views expressed in this report are those of the author(s) and not of Geological Survey Ireland or the Department of Climate Action, Communications and Environment.

Lead Applicant: Dr Eoghan Holohan

Host:  University College Dublin 

Project Title: 4D Quantification of Salt-related Sinkhole Development and Migration

Project Description: The development of sinkholes ('dolines') is a global geo-hazard. These 1-500 m diameter depressions commonly form by slow or sudden subsidence of rock or soil into underground cavities or fissures, and are linked with groundwater-induced dissolution of limestone, gypsum or rock-salt. In Ireland, several thousand sinkholes exist in limestone areas, but take many millennia to develop. In the Dead Sea region, several thousand sinkholes have developed in rock-salt in the last 35 years, due to an anthropogenically-forced decline of the sea-level. The Dead Sea region is thus the world's foremost 'natural laboratory' for understanding the development of sinkhole populations. The proposed research comprises the first comprehensive spatio-temporal investigation of the many hundreds of sinkholes of the eastern Dead Sea. An MSc student will be trained to quantify the spatio-temporal, morphological and volumetric development of sinkholes there by analysing high-resolution satellite and aerial images and by generating detailed three-dimensional images of the sinkhole area. This will yield new insights into bulk dissolution rates and related kinetics. The student will also undertake analytical hydrogeological modelling of links between sea-level decline and lateral migration of sinkhole development. Strategic project goals include the enhancement of Irish human capacity and international reputation in geo-hazards research.

Report